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First-Passage Process

5

Process by which a fluctuating quantity reaches a threshold for
the first time.

First-passage probability: for the random variable to
reach the threshold as a function of time.

Total probability: that threshold is ever reached. May or
may not equal 1.

First-passage time: the mean duration of the first-passage
process. Can be finite or infinite.

Typically defined by a single threshold

S. Redner, A Guide to First-Passage Processes, 200 |



Ordering of Brownian particles

System: NV independent Brownian particles in one dimension

What is the probability that original leader maintains the lead?

N Brownian particles

8902- ($, t)
ot

Initial conditions

rn(0) <axny_1(0) <--- <x2(0) < z1(0)

— DVQQOZ' (33, t)

X

Survival probability S(¢?)=probability leader remains first until ¢

Independent of initial conditions, power-law asymptotic behavior

St)~tP as  t— oo
Bramson 91
Monte Carlo: nontrivial exponents that depend on ;v Redner 96
benAvraham 02
N 2 3 4 5 6 10 Grassberger 03
BN | 1/2 | 3/4 | 0.913 | 1.032 | 1.11 | 1.37

No analytic expressions for exponents



Order statistics

Generalize the capture problem: S, (¢) is the probability that
the leader does not fall below rank m until time ¢

S1(t) is the probability that leader remains first

Sn_1(t) is the probability that leader never becomes last
X

Power-law asymptotic behavior is generic

S (£) ~ 7m0

41

Spectrum of first-passage exponents t

Bi(N) > Ba(N) > -+ > Bn_1(V)

#4

Can’t solve the problem? Make it bigger!
Lindenberg O



Two particles

We need the probability that two particles do not meet

Map two one-dimensional walks onto one two-dimensional walk

Space is divided into allowed and forbidden regions

Boundary separating the two regions is absorbing

Coordinate x1 — o performs one-dimensional random walk

Survival probability decays as power-law To Ty = T
Si(t) ~t~1/2 ¢

In general, map N one-dimensional walk o
onto one walk in N dimension with
complex boundary conditions C

X

\_




Three particles

Diffusion in three dimensions; now, allowed regions are wedges

m =2 m =1 m =1 m = 2

312 | 132 2o = 23
m—3 321 123 m — 1 g

231 | 213 Tl = T2

m =3 m = 2

r1 = I3 04:7'('/3 04227'('/3
Survival probability in wedge with openingangle 0 < o < 7
—7 /(4 Spitzer 58
S(t) ~ 1 /( ) Fl?s‘;wer 84

Survival probabilities decay as power-law with time
Si~t3* and Sy~ t73/8
Indeed, a family of nontrivial first-passage exponents
S,y ~ tPm with B1> P2 > > Bn-1

Large spectrum of first-passage exponents



First passage in a wedge

Survival probability obeys the diffusion equation
0S(r,0,t)
ot

Focus on long-time limit
S(r,0,t) ~ &(r,0)tF
Amplitude obeys Laplace’s equation
VZ®(r,0) =0
Use dimensional analysis

O(r,0) ~ (r/D)’p(0) = g + (28)* = 0
Enforce boundary condition S|p—, = Plg—0 = ¥]p=q

= DV~S(r,0,t)

Lowest eigenvalue is the relevant one
-

Yo (0) = cos(280) — B = o



Monte Carlo simulations

3 particles

confirm wedge theory results

4 particles

B; = 0.913
By = 0.556
Bs = 0.306

as expected, there are
3 nontrivial exponents



Simulations: small number of particles

strongly hints at asymptotic scaling behavior!

g — —
— D, (2" erfc” (2m/N)) =0
1.5F ooN=3 |
—a N:4
ﬁ L \ N=6 |
m X
0.5F §
O | | | |
0 0.2 0.4 0.6 0.8

Bm(N) — F(m/N) when N — oo

Scaling law for first-passage exponents



Kinetics of first passage in a cone

Repeat wedge calculation step by step
S(r,0,t) ~ (0)(Dt/r?)~"
Angular function obeys Poisson-like equation

L d [, gy
o2 ag |S0" g

Solution in terms of associated Legendre functions
a(0) = {(sin (9)_5P255+5(cos #) d odd, 5 d—3

N _(.9)

2828 +d—2)y =0

deBlassie 88

(sin «9)_5Qgﬁ+5(cos ¢) d even 2
Enforce boundary condition, choose lowest eigenvalue

PQ(SB_H;(COS a) =10 d odd,

Qgg+5(COS a) =0 d even.

Exponent is root of Legendre function



Additional results

Explicit results in 2d and 4d

T T —
Ba(a) = i and [4(a) = 5
Root of ordinary Legendre function in 3d
Psz(cosa) =0 .Y

Flat cone is equivalent to one-dimension
Bala=m/2) =1/2
First-passage time obeys Poisson’s equation

DV?T(r,0) = —1

First-passage time (when finite)

T(r.0) = r? cos? 0 — cos? o

2D dcos?a—1 a < cos™ (1/Vd)




Asymptotic analysis

Limiting behavior of scaling function

(\/y2/87r exp(—y2/2) Yy — —00,
\y2/8 Yy — 00.

B(y) = 1

Thin cones: exponent diverges
Bq(a) ~ Bga~t with J5(2Bg) =0
Wide cones: exponent vanishes when ¢ > 3

6d(04) ~ Ad (7‘(’ — a)d_3 With Ad — %B (%, %)

A needle is reached with certainty only when d < 3
Large dimensions

4L 1) a<7/2

S1n «

d
4
\C(sina)d a > m/2.

Bd(oz) ~ <




Righ dimensions

6 ————————————————7——— b T T T T T T T T
g [ — d=10
5k §=§ 5 — d=100
L — d=4 - — Dy(y)=0
L — d=8 4k
4_ — d=1 i
B 3t P 3f
2F o)"
1F 1F
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1/2
cos A N “cos o

® Exponent varies sharply for opening angles near 7 /2
® Universal behavior in high dimensions
Ba(a) — B(VN cos a)
® Scaling function is smallest root of parabolic cylinder function

Dys(y) =0
Exponent is function of one scaling variable, not two



Diffusion in high dimensions

312 | 132z = x4
In general, map N one-dimensional

wallk onto one walk in NV dimension
with complex boundary conditions

321 123

231 | 213 T1 = T2

L1 = I3

There are (g) _ N(NQ_ ) planes of the type z; = z;

These planes divide space into N! “chambers”

Particle order is unique to each chamber

The absorbing boundary encloses multiple chambers
We do not know the shape of the allowed region
However, we do know the volume of the allowed region

Equilibrium distribution of particle order
m

Vm:N



Cone approximation

Fractional volume of allowed region given by equilibrium
distribution of particle order Q§
m
Vin (V) = N
Replace allowed region with cone of same fractional volume
V(a) = Jo df (sing)" 2 dQ o< sin? "2 6 d6
foﬁ db (Sin@)N_3 d= N — 1

Use analytically known exponent for first passage in cone

254~ (cOsa) =0 N odd, . N — 4
Pz, (cosa) =0 N even. 2
Good approximation for four particles
m 1 2 3
% 1/4 1/2 3/4

pgeone 110.888644 | 1/2 | 0.300754
Bm 0.913 0.506 0.306




Small number of particles

® By construction, cone approximation is exact for N=3

® Cone approximation gives a formal lower bound  Rayleigh 1877
Faber-Krahn theorem

Excellent, consistent approximation!



Very large number of particles (N — 00)

® FEquilibrium distribution is simple
m
Vm — N
® Volume of cone is also given by error function

1 1 —Y .
V(ia,N) — 5 + 5 erf <\ﬁ> with y = (cosa)VN

® First-passage exponent has the scaling form
Bm(N) — B(x) with z=m/N
® Scaling function is root of equation involving parabolic cylinder function

Dsg (\@erfc_l(Qx)) =0

Scaling law for scaling exponents!



Simulation results

2 ' I ' ! ' | ' |
o DZB(ZI/ZerfC_l(ZX)) =0
1.5F ¢ No10 -
" N=10"

il -
0.5F -
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x=m/N
Numerical simulation of diffusion in 10,000 dimensions!
Cone approximation is asymptotically exact!



Extreme exponents

® Extremal behavior of first-passage exponents

1n L r — 0
5(5’3)“’{4 ’ 1

(1 —x)In r— 1

® Probability leader never loses the lead (capture problem)

1
/61 ~ Z In NV
® Probability leader never becomes last (laggard problem)
1
ﬁN—l ~ N In NV
® Both agree with previous heuristic arguments Krapivsky 02

Extremal exponents can not be measured directly
Indirect measurement via exact scaling function



Small number of particles

N | geome B N 8% [ By-s
3 | 3/4 3/4 2 | 1/2 1/2
4 | 0.888644 | 0.91 3 |3/8 3/8
= | 0.0%6604 | 1.0 4 | 0.300754 | 0.306
- 5 1 0.253371 | 0.265
0 ;“062297 1':‘1 6 | 0.220490 | 0.234
Cop L2362 L9 g 196216 | 0.212
8 | 1.175189 | 1.27 8 | 0.177469 | 0.190
9 | 1.219569 | 1.33 9 | 0.162496 | 0.178
10 | 1.258510 | 1.37 10 | 0.150221 | 0.165

Decent approximation for the exponents
even for small number of particles



Summary

First-passage kinetics are rich

Family of first-passage exponents

Cone approximation gives good estimates for exponents
Exponents follow a scaling behavior in high dimensions
Cone approximation yields the exact scaling function

Combine equilibrium distribution and geometry to obtain
exact or approximate nonequilibrium behavior, namely,
first-passage kinetics



Outlook

Heterogeneous Diffusion

Accelerated Monte Carlo methods
Scaling occurs in general

Cone approximation: sometimes exact,
is not always asymptotically exact
Geometric proof for exactness

Limiting shapes in general



Number of pair inversions

Cone approximation is asymptotically exact!



Number of particles avoiding the origin

5 ' I ' I ' I

— D,,(22)=0 .

Counter example: cone is not limiting shape



